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Summary

A second-order model for the velocity field and a two-equation model for the temperature
field are used to calculate supersonic boundary layers assuming negligible real gas effects. The
modeled equations are formulated on the basis of an incompressible assumption and then extended
to supersonic flows by invoking Morkovin's hypothesis, which proposes that compressiblility
etfects are completely accounted for by mean density variations alone. In order to calculate the
near-wall flow accurately, correcting functions are proposed to render the modeled equations
asymptotically consistent with the behavior of the exact equations near a wall and, at the same time,
display the proper dependence on the molecular Prandtl number. Thus formulated, the near-wall
second-order turbulence model for heat transfer is applicable to supersonic flows with different
Prandt] numbers. The model is validated against supersonic flows with free-stream Mach numbers
as high as 10 and wall temperature ratios as low as 0.3. Among the flow cases considered, the
momentum thickness Reynolds number varies from ~4,000 to ~ 21,000. Good correlation with
measurements of mean velocity and temperature is obtained. Discernible improvements in the law-

of-the-wall are observed, especially in the range where the log-law applies.
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1. Introduction

Until recently, it was not possible to calculate supersonic flat plate turbulent boundary
layers accurately when the free-stream Mach numbers are higher than 5 (Bradshaw et al. 1991).
The reason can be traced to an incorrect estimate of the near-wall flow using wall functions (Zhang
et al. 1992). With the advent of supercomputers and numerical techniques, it was possible to
numerically simulate simple turbulent flows with and without heat transfer (Moser and Moin 1987;
Kim et al. 1987; Mansour et al. 1988; Spalart 1988; Kim and Moin 1989; Kasagi et al. 1991).
Consequently, asymptotically correct near-wall two-equation models for the velocity and
temperature fields have been proposed (So et al. 1991b; Nagano and Kim 1988; Nagano et al.
1991: Sommer et al. 1992). These models were based on conventional high-Reynolds-number
models with near-wall correcting functions that were derived to satisfy the asymptotic behavior of
the exact equations. As such, the models were formulated for fluids with Prandtl number, Pr = 1
(So and Sommer 1993). These models have been applied to calculate a wide variety of
incompressible flows with and without heat transfer, including direct simulation data, and good
agreement was obtained for all flow cases tested. Extensions to second-order models have been
proposed and validated (Lai and So 1990a,b; So et al. 1991a). Again, the high-Reynolds-number
second-order models were found to give good results when they were modified to yield
asymptotically correct near-wall behavior. The modifications were in the form of near-wall

correcting functions added to the Reynolds-stress and dissipation-rate equations.

These successes, therefore, justify the extension of the near-wall correcting functions to
supersonic flows. The extension was first carried out with two-equation models (Zhang et al.
1992) assuming the validity of Morkovin's hypothesis (1962) and the results indicated that, with
an asymptotically consistent near-wall correction, the models were able to mimic supersonic flows
up to a free-stream Mach number of 10 with an adiabatic wall. In this first attempt, real gas effects
were neglected and the turbulent Prandtl number, Pr;, was assumed to be 0.9. On the other hand,
the calculations of supersonic flows with cooled wall boundary condition and high Mach numbers

were not as satisfactory. Strictly speaking; there is no dynamic similarity between momentum and



heat transport, even in incompressible flows (Antonia and Kim 1991). Therefore, the constant Pr;
assumption needs to be relaxed. An attempt for supersonic flows has been carried out (Sommer et
al. 1993) and the variable Pr, model used was a modification of the two-equation incompressible
model proposed by Sommer et al. (1992). Therefore, the proposed model was applicable to flows
with Pr = 1 only. The variable Pr; calculations assuming negligible real gas effects were in good
agreement with measurements (Fernholz and Finley 1977; Kussoy and Horstman 1991) and gave
significant improvement over those obtained assuming constant Pr,. The same methodology has
been applied to modify second-order models for supersonic flows (Zhang et al. 1993) and these
calculations with constant Pr; were found to give improvements over those reported by Zhang et al.
(1992), especially the calculations of high Mach number flows with low wall temperature ratios.
This means that, for the first time, a model to treat complex compressible flows is available.
However, the second-order model is still limited by the constant Pr; assumption and by the fact that

the model is only applicable to fluids with Pr = 1.

Most engineering flows of importance involve fluids whose Prandtl numbers vary with
temperature and the range of variation could be large. Furthermore, some fluids have a Pr that is
vastly different from 1. In view of this, an appropriate variable Pr, model for flows with heat
transfer would be one that could handle a wide variety of Pr in addition to being able to account for
variable Pr effect. This means that a more general incompressible heat transfer model to those
proposed by Nagano and Kim (1988), Nagano et al. (1991) and Sommer et al. (1992) has to be
formulated and validated before its extension to supersonic flows. The task has been attempted by
So and Sommer (1993). Their approach is based on the proposal of Sommer et al. (1992). In
addition to requiring the modeled equations to satisfy the asymptotic behavior of their exact
counterparts, they also try to model the correcting functions so that the parametric dependence on
Pr of the near-wall flow is properly accounted for. The result is a variable Pr, model that could
correctly predict incompressible heat transfer with Pr that varies from a low of 102 to a high of

103. The model is applicable to flows with constant wall heat flux as well as constant wall



temperature boundary conditions and the predictions are in good agreement with such diverse data

as those given by Kader (1981), Kim and Moin (1989) and Kasagi et al. (1991).

The present objective is to formulate a second-order variable Pr, model for supersonic
flows that is valid for a wide range of Pr. This is accomplished by relaxing the constant Pr;
assumption made in the second-order model of Zhang et al (1993) and by extending the heat
transfer model of So and Sommer (1993) to supersonic flows. In the present work, Morkovin's
hypothesis (1962) is again invoked and the approach taken is similar to that outlined in Sommer et
al. (1992). Consequently, the second-order modeled equations of Zhang (1993) for the velocity
field and the two-equation model of So and Sommer (1993) for the temperature field are extended
to supersonic flows. An established boundary-layer code (Anderson and Lewis 1971) is modified
to solve the set of governing equations and the calculations of compressible boundary layers with
adiabatic and cooled wall boundary conditions over a wide range of Mach numbers are compared
with measurements (Fernholz and Finley 1977; Kussoy and Horstman 1991) and the constant Pr,

calculations of Zhang et al. (1993).



2. Mathematical Formulation

The supersonic flow of an ideal gas with real gas effects, bulk viscosity and body forces
neglected is considered. A density-weighted average is used to decompose the fluctuating
quantities, besides pressure and density, into a mass-weighted mean part and a mass-weighted
fluctuating part. On the other hand, the pressure and density are decomposed using Reynolds
average, which results in a time-averaged mean part and a time-averaged fluctuating part. For any
variable F, the mass-weighted mean is denoted by 7, the mass-weighted fluctuating part by f, the
time-averaged mean by F and the time-averaged fluctuating part by f". The fluid density is taken
to be p, the dynamic viscosity g, the thermal conductivity , the specific heat at constant pressure
Cps

temperature ©, and the ith component of the velocity u;, the mean equations of motions for

and the gas constant is denoted by R. In terms of these variables and the pressure p, the

compressible turbulence can be written as:

P (GT) =0 )
ot
BU o (p0,0) = P - HE0s + B + Ol - Bl @)
aﬁac_tpé + [30,¢,0); - -aé O+ TP+ ap, + 5,00

« Gy + pe- (pT0) + kO 3)
P=pR o , 4)

where (*) ; denotes a gradient with respect to the spatial coordinate x;, the Einstein summation

convention applies to repeated indices, and the Reynolds stress tensor, the Reynolds heat flux

——

vector, the turbulent dissipation rate are defined as 7; = iu; , Qi = u;@ , pe = o;; u;.]. ,

respectively. The mean viscous stress tensor is given by:

_— ~

o = -%_Uk.k 0ij + E(ﬁu + Uj.i) . ®)



When deriving these equations, additional assumptions are made regarding the neglect of

turbulent fluctuations of dynamic viscosity, thermal conductivity and specific heat. Also,

according to Speziale and Sarkar (1991), the velocity-pressure gradient correlation term ; p: ; can

be written in the equivalent form as

up; = -lpROT); + P RuS): - puy; 6)

From these equations, it can be seen that, to achieve closure, models are required for the Reynolds

stress tensor 7j;, the Reynolds heat flux vector Q;, the pressure dilatation correlation p' u;; , the
turbulent dissipation rate € and the mass flux vector u; . In the following, appropriate near-wall

models are proposed for 7;;, Q; and €, while Morkovin's hypothesis (1962) is invoked to justify

the neglect of p' u;; and #; in the modeling of supersonic turbulent flows. The models for 7;,

and £ are presented first and this is followed by a discussion of the model for Q; .



3. Second-Order Model for the Velocity Field

The modeling of the Reynolds stress tensor is provided by the Reynolds-stress transport
equation which is closed by postulating models for the terms representing turbulent diffusion,
viscous dissipation and velocity-pressure gradient correlation in the exact equation.
Incompressible models for these terms are proposed. Usually the models are formulated for high
Reynolds-number flows, therefore, they are not suitable for near-wall flow calculations.
Furthermore, the modeled equation is not valid at the wall. Consequently, some kind of wall
functions have to be invoked to connect the modeled equation to the wall so that the wall boundary
conditions for the Reynolds stresses can be satisfied. This approach is not satisfactory because it
is too restrictive in the sense that the wall functions proposed are very much flow-type dependent
and thus render the Reynolds-stress model less general compared to other models that are not as
sophisticate or are of lower order. Various remedies have been proposed. However, the most
promising approach is to modify the modeled equations so that they are valid for near-wall and/or

low-Reynolds-number flows.

The approach taken by Zhang (1993) is to derive near-wall correcting functions for the
Reynolds-stress transport equation and the conventional dissipation-rate equation. Certain
constraints are imposed and these include the requirements that the wall boundary conditions for
the Reynolds stresses and the dissipation rate have to be satisfied exactly and that, to the lowest
order of the wall normal coordinate x5, the near-wall behavior of the modeled equations is
consistent with that of the exact equations. The correcting functions derived by Zhang (1993) give
asymptotically correct matching up to order x,. Of course, more accurate correcting functions can
be derived; however, these fairly simple near-wall models are found to give results that are in good
agreement with measurements covering a wide range of flow Reynolds numbers (Zhang 1993).
These successes prompt the extension of the incompressible modeled equations to supersonic
flows by invoking Morkovin's hypothesis (1962) and the results are extremely encouraging
(Zhang et al. 1993). In view of this, Zhang et al.'s (1993) modeled Reynolds-stress equations are

adopted in the present work.



The compressible Reynolds-stress equation written in the same form as its incompressible
counterpart is given by:

Sa—(ﬁrij) + (ﬁkﬁf,'j)‘k = (u,ojk + u}o';ci'.k + Cijlc,k + (- Er,-kﬁj,k - E’l’jkl"ji'k)
t

+ IT; - & + (%p.“'k.k 5ij) - (P + WPy + (@ojex + wowx . @)

where  Cijkx = -(Eu;ujuk + %P'u;‘ 5ij)k

m; = ’(u;'P:j + u,P.) + %—u;rp:k 5

€j = G}ku},k + U}k“;'.k
are the turbulent diffusion of 7j;, the velocity-pressure gradient correlation and the viscous
dissipation rate of 7jj, respectively. The last three bracketed terms in (7) arise as a result of
compressibility and are identically zero for incompressible flows. Therefore, if Morkovin's
hypothesis (1962) is invoked, the last three bracketed terms in (7) can be neglected and the

wurbulent diffusion, viscous dissipation and velocity-pressure gradient correlation terms can be

modeled as in constant-density flows. Consistent with this assumption, the term p'u}'i in (6) is
also neglected. Finally, the viscous diffusion term (u}aj'-k + u}o}k’,k is approximated by (L7 )
Thus simplified, (7) can be closed by adopting the near-wall models proposed by Zhang (1993).

Without derivation, these models are given as:

Cijkk = [C,E-K-(Tu’l‘,'jj + TpTeig + ‘t'uT_,'k_l)] , ®)
£ 4
R w
H,'j = (D,‘j + @;j + ¢gj , )
€ = %Ee & + & . (10)

Here, @;; is given by the high-Reynolds-number model of Launder et al. (1975), db,-? is the

"pressure echo” term, and CD,-‘}' and 8}}' are near-wall corrections. Zhang (1993) have shown that, to

order x3, the near-wall correction terms are not affected by the presence of the "pressure echo”



term. Therefore, the proposal for di,-;? is applicable irrespective of whether the "pressure echo”

term is included in the modeling of IT;; or not. The models for these different terms can now be

generalized for compressible flows as:

D = - Clﬁf(r.-,- - %K &,-) - al(Pij - %Fﬁj) - ,Bl(D;,- - -32—1?"5;') -2¥KS; o, AD
®f = 2C, pK S;i(K3exy) | (12)

D = fwx[Cxﬁ 1—?—(% - %K 5ij) - E‘[%(Tiknknj + Timgn;) + a*(P.-j - %}"" 8,,)] ,(13)

(T + Tumnj + Tumni + "‘”if"‘""”’)] (14)

A -;_ i p£
8.] fWI[ 3p€ 6‘] + pK (1 + 3fk1nkn1/2K)

where P;; = - (p tulJ ik + P 10 1) represents turbulence production, K = 7;/2 is the turbulent
kinetic energy, P = P;i/2, Sj = L(Ui; + U;) and Dy = -(p tuly; + pruli;) The

(o]

damping function is defined as f,; = exp [- (Re:/ 150)2] while the turbulent Reynolds number is

given by Re; = K% v&. Unit normal to the wall is denoted by n; and the C's are model constants
whose values are chosen to be the same as those given by Zhang (1993). Furthermore, the model
constants &, B and 7, are related to a single constant C; and the relations are as given by
Launder et al. (1975). For ease of reference later on, the second-order model with the term (D,-f

included is referred to as LRR/WR, while the model with the term <D§ excluded is denoted as

LRR.

The dissipation rate £ is decomposed into a solenoidal part and a compressible part so that €

= £ + ;. These latter terms are defined as: p & = ua);a)}, pE = %,u(u}_i)z and w, is the

fluctuating vorticity. The solenoidal dissipation rate is associated with the energy cascade,
therefore, it approaches its incompressible limit correctly. Consistent with Morkovin's hypothesis
(1962), the compressible part of € is neglected in the present formulation and € is taken to be given

by & alone. A modeled dissipation-rate equation similar to its incompressible counterpart can be

written for compressible flows as:



WE (= ~y (= —K . 5 pEE
-+ Pelde = rede + (CePBrue) + CafP-Ca%mv g . 15)

The near-wall correcting function & of Zhang (1993) can be generalized for compressible flows to
give
5l-2e£ g £
§=fw2p-2K +l.5K-1.5C51KP . (16)

In (16), £ and & are defined by p€ = pe - 21(VK /oxof and pe=pe - 2U K/ x3,
respectively, and the damping function is given by fu2 = exp [- (Re, / 40)2]. Again, the C's are

model constants and their values specified by Zhang (1993) are adopted.

For the sake of completeness, the model constants used are specified as C; = 1.5, C, = 0.4
Ce1=15,Cep=1.83,C,=0.11,C,=0.1,a* =045 and a; = (8 + C,)/11, B; = (8C, - 2)/11
and ¥ = (30C, - 2)/55. The constant C,, is introduced as a result of "pressure echo” modeling in
the velocity-pressure gradient correlation. For compressible flow calculations, a generally valid
relation is given by Zhang et al. (1993) as: C,, = (C,,)ip - (5.8 x 10-9YM,, for M, > 2.5, where M,
is the free stream Mach number. For M, 2.5, C,, = (C,,)in, Where (C,,);, is given by: (C,)ip =
4.14 x 10-3 + 3 x 10-3(log Reg) for Reg < 5.500 and (C,,);p = 0.0153 for Rey > 5,500. Here,
Regis the momentum thickness Reynolds number. Finally, the boundary conditions for the mean

and turbulent velocity field are given by:

T=V=K=1=0 e=2w{0K/of . 17)



4. Two-Equation Model for the Temperature Field

In the previous section, a near-wall second-order model is outlined for the velocity field.
Since it is advisable to calculate turbulent heat transfer using a turbulence model of equal or lesser
order, a two-equation model for the temperature field would be most appropriate for the present
work. Therefore, gradient transport is assumed and the ith component of the turbulent heat flux is
givenby - Qi = - l:é = o (ag /Bx,-), where ¢ is the eddy thermal diffusivity. Dimensionally,
@, is the product of a velocity scale and a length scale. A characteristic velocity scale for turbulent
flow is K172, If the interactions between momentum and heat transport are to be modeled properly,
an appropriate length scale would be one given by a combination of X 112 and the time scales of

both the thermal and velocity fields. The time scale characteristic of the thermal field can be

evaluated from the temperature variance 6” and its dissipation rate &g, while the time scale for the
velocity field is given by K and its dissipation rate & In view of this, the simplest proposal for ¢

will be:

—~ 1/2
o = C,lfAK[K 0 /eg , (18)

where the velocity scale K7/2 is multiplied by the combined time scale [K 6 /€ 89]”2 to give an
appropriate length scale for the definition of e, C, is a model constant and f3 is a damping
function to be defined. A constant value of C3 = 0.11 has been put forward by Nagano and Kim
(1988) and adopted by Sommer et al. (1992, 1993). Furthermore, C; = 0.10 has been assumed
by Nagano et al. (1991). In all these calculations, the 0.1 value is found to give good results for

the flow cases tested. Therefore, it is prudent to assume a value not too different from 0.1. For

the present, C; = 0.095 is found to give the best results. As for f), it has to be parametric in Pr,

otherwise, the model cannot be applied to calculate heat transfer in fluids with vastly different Pr.

In the following, a near-wall model for ¢, is first discussed, then the appropriate expression for f3

is presented.

Since K and € are defined by the solution of the modeled equations outlined in the previous

. . . . . 3
section, @ can be determined by solving two equations governing the transport of 6 and &y For

10



incompressible flows, various modeled equations for 5’ and €5 have been proposed (Launder
1976). These equations are formulated for high-Reynolds-number flows, therefore, they cannot
be used consistently with other near-wall models. Several near-wall two-equation models have
been put forward by Nagano and Kim (1988), Nagano et al. (1991), Sommer et al. (1992, 1993)
and So and Sommer (1993). One of these models is asymptotically incorrect and gives a zero &g at
the wall (Nagano and Kim 1988); therefore, it is not consistent with the behavior of the near-wall
turbulence model described above. The other models give asymptotically correct results near a
wall and are appropriate for the present application. With the exception of So and Sommer (1993),
most of the models formulated to-date are, strictly speaking, valid for fluids with Pr = 1. If the
compressible turbulence model for heat transfer is to be general enough for fluids with vastly
different Pr, then the appropriate incompressible model to be adopted for extension to compressible
flow is that proposed by So and Sommer (1993). Therefore, the present approach adopts that

model as a base and proceeds to generalize it for supersonic turbulent flows.

Again, Morkovin's hypothesis (1962) is invoked in order to extend the incompressible
model to compressible flows. Since the incompressible modeled equations for 8" and €g have
been given by So and Sommer (1993) and their extensions to compressible flows are straight

forward, these equations can be written down without derivation as:

~ ~ ~ ~ ~

- —~ 00 _ - - -

pae +pUka_=_a_ 96~ +iC92kajK§2— -2kaa_6-2pge ,(19)
ot axk axk axk axk € ax,- Xk

_Jgg  —w~ 089 O (__aeg) ? ( — Kaeg) £
p—= + pUy = pa + CooP W 2—| + Ca1 =2 Py + CnE P,
ot oxp  dxg ox; el € ox 6 k
8 —_— Y —
+ Cﬁ—KQPw - Cd4§%P€e - CdS%PEB + &eo 20)

~

3 3
where the effects of both thermal (6 / &) and velocity (K/¢) time scale on the dissipation of 8~ are
modeled into the gy equation. In these equations, & is the mean thermal diffusivity

Po=-pQ: (a@/ axk) is turbulence production due to mean temperature gradients, 4 is a near-

11



= 2
. . ~ _ 2 .
wall correcting function, €g = £ - & (BV 6/ axz) and the C's are model constants to be

defined later.

If the proposed model is to approach the high-Reynlods-number limit correctly, the model

constants in (19) and (20) cannot differ from conventional values adopted by other researchers. A
generally acceptable set of constants for the C's are given by: Cg? = 0.11, Cg = 0.11, Cy4; = 1.8,
Cgp=0,Cq3 =072, Cyg = 22and Cys = 08. In other words, the near-wall correcting
function &g has to be determined so that (19) and (20) would approach their high-Reynolds-
number counterparts correctly, i.e. &g would asymptote to zero away from a wall. When these

constraints are used to derived &g correct to order x, near a wall, the following expression is

obtained:
- )
— Eaq ~ € E *
bco = fu.c0P|(Caa - 4):%89 + CdSﬁ‘ee - % +2-Ca - Cdzpr)-:%l’g , (21)
6 6 2]

. . . Py — 3
where P; is the mean production term in Pgdue to 0© /dx; alone and E; =€ -a 0 /x3} The
presence of P; is a consequence of the constant wall heat flux boundary condition where 08 / oxi

is finite. Therefore, the near-wall correcting function is valid for all thermal wall boundary
conditions. A damping function £, ;o = exp [- (Re:/ 80)2] is introduced to ensure that the

contribution of &9 would vanish away from the wall. Thus formulated, the model has no new
constants compared to its high-Reynolds-number counterpart.

With the exception of Nagano and Kim (1988), the various damping functions proposed
for f; satisfy the requirement that @, behave like x3 as a wall is approached. This is consistent
with the exact near-wall behavior of the normal heat flux. If, in addition, the model is to work well
with flows having different Pr, then f3 has to be parametric in Pr. When these requirements are

used to deduce an expression for f3, the following is obtained (So and Sommer 1993):

fr= Ca(l - fu)/Re™ + fu (22)

12



where C;; is a model constant taken to be parametric in Pr, the damping function fy; is defined by
fip =1 - expl-x3/ A*JE, x3 = xuc/v is anormal coordinate made dimensionless by the
local length scale v/ u, and the model constant A* is also assumed to be parametric in Pr. The
friction velocity u. is defined as (rw/;_)_)m . Typically, for flows with Pr = 1, the values for Cy;
and A+ are 0.1 and 40, respectively. Their variations with Pr have been determined by So and
Sommer (1993) and are given by: A* = 10/Pr forPr<0.25and A" = 39/ Pr'"¢ for Pr 2 0.25;
Cy = 0.4/Pr* forPr<0.1and Cuy = 0.07/Pr forPr20.1.

3
Finally, the wall boundary conditions for the temperature field and 6 and &4 can be stated

as follows. At the wall, the thermal boundary conditions can either be adiabatic or constant
—~ N 2
temperature, while 8° =0 and (€ghw = O (aV 6 / axz) are appropriate for both thermal wall

boundary conditions.

13



5. Results and Discussion

The ability of the near-wall models to calculate heat transfer in fluids with widely different
Pr is illustrated first. In these calculations, fully-developed pipe and channel flows with adiabatic
and constant wall temperature boundary conditions are considered. Therefore, the governing
equations outlined above can be reduced to ordinary differential equations and solved fairly easily
by some standard numerical techniques, such as Newton iteration or relaxation methods. Both
high and low Reynolds-number flows are calculated and compared with measurements and direct
numerical simulation (DNS) data. Some sample comparisons are shown here. These are the
comparisons with the empirical temperature log-law of Kader (1981) and with the DNS data of

Kim and Moin (1989).

In Kader's (1981) study, an empirical temperature log-law is proposed after careful
analysis of numerous temperature measurements in pipe and channel flows with widely different
Pr. The resultant log-law is found to correlate well with measurements over a broad range of
Reynolds number and Pr. Since a more careful comparison with this empirical log-law has been
given by So and Sommer (1993), only a representative comparison in the Pr range 10 < Pr < 100
is shown in Fig. 1. In this figure, ® = 5/ ©:,y* = yu./ v,y is the normal coordinate to the
wall and ©; is the friction temperature. The model calculations are in very good agreement with
Kader's temperature log-law. Such good agreement extends to Pr as low as 0.025 and as high as
103. A sample comparison with low-Reynolds-number channel flows is carried out with the
constant wall temperature DNS data of Kim and Moin (1989). The Reynolds number based on u,
is 180 and three different values of Pr are investigated. These are: Pr = 0.1, 0.71 and 2. The
velocity field comparisons have been given by So and Sommer (1993) and the results are in good
agreement with DNS data. Here, only the comparisons with &+ and 6,,, = (?)m/ 6,, the root-
mean square temperature variance, are shown in Figs. 2 and 3, respectively. It can be seen that the
calculated mean temperature profiles agree well with DNS data and their dependence on Pr is

modeled correctly (Fig. 2). A slight discrepancy exists in the prediction of the maximum 6,5 and

14



this is most notable for the case where Pr =2 (Fig. 3). In general, the heat transfer model gives

good predictions of incompressible flows with widely different Pr.

The compressible flow calculations are compared with the measurements of Fernholz and
Finley (1977) and Kussoy and Horstman (1991) and the constant Pr, model of Zhang et al.
(1993). This way, the validity of the constant Pr, assumption for compressible flows can be
examined. Measurements obtained under both adiabatic and cooled wall boundary conditions are
considered. In this preliminary attempt, all calculated cases are limited to flat plate boundary layers
only, while attempts to calculate complex supersonic flows will be discussed in a subsequent
report. Two adiabatic cases are chosen from Fernholz and Finley (1977). The free-stream Mach
numbers of these two cases are M, = 2.244 and 10.31, while the corresponding momentum
thickness Reynolds number, Rg, are 20,797 and 15,074, respectively. In addition to mean
velocity, wall friction is also reported. Therefore, the comparisons are made with the mean
velocity profiles in semi-log plots of U+ versus Iny , where U* = U/u. and yi = y uc/ w.
Calculations are made of the skin friction coefficient, C; = 2%,/ p. U2 and the heat transfer
coefficient, Cx = gu/ p- U-G, {9., - 9,.,), where ¢, is the wall heat flux. Furthermore,
comparisons are made with the mean temperature profiles in the form of 5/ 6. versus y / 6, where
©.. is the freestream temperature and & is the measured boundary-layer thickness. However, these
are not independent comparisons because the temperature profiles are inferred from the measured
velocity profiles by assuming constant total enthalpy and pressure across the boundary layers. In
order to verify the present heat transfer model, comparisons with supersonic cooled wall boundary
layers are carried out. Only one case is presented and this has a wall temperature ratio 6,/ O, =
0.3. The data is extracted from Kussoy and Horstman (1991). The corresponding M., and R g are
3,939 and 4,600, respectively. Since the measurements of velocity and termperature are obtained
independently, the performance of the compressible heat transfer model can be evaluated. Again,
the skin friction coefficient and the heat transfer coefficient are calculated and compared with

measurements.
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Comparisons with the cases where an adiabatic wall boundary condition is specified are
presented first. These results are shown in Figs. 4 - 7. Only the mean velocity (Figs. 4 and 6) and
mean temperature (Figs. 5 and 7 ) profiles are compared. The measured velocity profiles can be

correlated by the log-law (Zhang et al. 1992a)

vt =Ly + B @3)
where xis the von Karman constant. At low Mach numbers, the log-law with k= 0.41 and B =
4.3 correlates well with data and model calculations (see log-law plotted in Fig. 4). As Mach
number increases, B decreases with Mach numbers and at M, = 10.31, the B value determined
from the present model is 3.35 while that from the constant Pry model is 3.8. Both models give the
same von Karman constant, i.e. k= 0.41. However, the present model yields a longer range log-
law compared to the constant Pr, model and is more consistent with measurements (sce the log-
laws plotted in Fig. 6). Therefore, the B value thus determined is more reliable (Fig. 6). As for
the temperature comparison (Figs. 5 and 7), again, there is little difference between the two model
predictions at low Mach numbers. At M., = 10.31, there is a slight discrepency between the
present model and that of the constant Pry model in the region bounded by 0.1 < y/6<0.5. It
seems that the present model over-predicts the mean temperature in this region. Since the mean
temperature data are inferred from the mean velocity measurements and the assumption of constant
total enthalpy, it follows that a high measured velocity would lead to a low temperature estimation.
The measured velocities seem to be high compared to the log-law in this region, therefore, the
inferred temperatures are low. Measurements of Cy x 10-3 for the M, = 2.244 and 10.31 cases are
1.62 and 0.24, respectively. The corresponding values determined from the constant Pr, model of
Zhang et al. (1993) are 1.69 and 0.24, while the present model gives 1.71 and 0.24, respectively.
As far as the prediction of C¢ is concerned, both models are quite good. In other words, the
integral boundary-layer parameters are not as much affected by the model used to calculate the

flow.
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The cooled wall results are compared in Figs. 8 and 9. It has been demonstrated by Zhang
et al. (1992) that the von Karman constant changes as the wall temperature ratio decreases.
Furthermore, B also varies as 6,/6,,, decreases. The same behavior is predicted by the constant
Pr, model and the present model. When 6,/8,,, decreases to 0.3, the x and B values determined
from the model calculations are: 0.29 and 2.87 from the present model and 0.29 and 3.74 from the
constant Pr; model (see the log-laws plotted in Fig. 8), respectively. It is difficult to say which set
of values agrees better with measurements. However, as before, the present model yields a longer
range of log-law compared to the constant Pr; model and is consistent with the measurements. In
view of this, it can be said that the set of values determined from the present model is more
reliable. There is little difference in the predicted mean temperature at low values of 6,/6,,. As
6,/6,,, decreases to 0.3, a slight discrepency exists between the model predictions in the region
bounded by 0.1 < y/§ < 0.5 (Fig. 9), which is the same as observed in the M, = 10.31 case with
an adiabatic wall boundary condition. This time, the mean temperatures are measured
independently and they seem to agree better with the predictions of the constant Pr, model. The
measured Cfx 10-3 and Cpx 10-3 for the M_, = 8.18 case are 0.98 and 0.53, respectively, while
the corresponding calculated values are 0.95 and 0.57 from the constant Pr, model and 0.99 and
0.60 from the present model. It can be seen that there is an improvement in the prediction of Crbut
a deterioration in the calculation of C, when the present model is used to simulate the temperature
field. However, according to Kussoy and Horstman ( 1991), the measurement of C j 1S not as
accurate as that of Cr. Therefore, it might turn out that there is no deterioration in the prediction of

Cy, after all.

—~

Finally, some sample plots of the temperature variance 6 * and turbulent Prandtl number Pr,

are shown in Figs. 10 and 11, respectively. The root mean square temperature variance

normalized by (6, - €,,) is shown in Fig. 10. It can be seen that, as M, increases, the maximum
3. . . . .

€ increases. The same is true when 6,,/6,,, decreases; however, the increase is substantially
larger than that due to Mach number enhancement. Therefore, these results indicate that

temperature fluctuations are promoted by compressibility and most significantly by wall cooling.
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The calculated Pr; is not constant across the boundary layers (Fig. 11). For an adiabatic wall
boundary condition, the calculated Pr; reaches a maximum of about 2 at the wall and decreases
rapidly to about 1.5 in the region 4 <y < 8. Thereafter, Pr; continues to decrease towards the
edge of the boundary layer. Essentially the same trend is followed by the M, = 2.244 case, except
that the level is lower. On the other hand, Pr; has a value of about 1.1 at the wall for the cooled
wall case. Its value decreases to a minimum at y; = 6 and then rises to a maximum of about 1.7 at
ys =20. At the edge of the boundary layer, the value of Pry is about 1.0, which is substantially
higher than the values attained in the adiabatic wall cases. The constant Pr; model calculations
show that, irrespective of the fact that Pr, varies significantly across the boundary layers, a
constant value of 0.9 yields mean flow results that are as good as the present model. As for the
turbulence statistics, no reliable data is available for comparisons. Therefore, the merit of the

present model versus that of constant Pr; cannot be commented on in this work.
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6. Conclusions

A two-equation turbulence model for the temperature field is proposed for supersonic
flows. The model equations are derived directly from their incompressible counterparts by
invoking Morkovin's hypothesis, where it is postulated that compressibility effects could be
accounted for by the variations of mean density alone. An eddy thermal diffusivity is assumed and
it is determined from the temperature variance and its dissipation rate, whose transport equations
are modeled and solved in the present approach. The eddy thermal diffusivity is taken to be the
product of a turbulence velocity scale and a length scale. It is further assumed that the turbulence
velocity scale and an appropriately defined time scale can be used to define the length scale. Both
thermal and velocity time scales are used to determine the appropriate time scale. This is necessary
because the interactions of the velocity and temperature fields have to be accounted for properly.
The present approach invokes a second-order compressible turbulence model for the velocity field.
The model equations are applied to study supersonic flows with freestream Mach numbers and
wall temperature ratios that vary from 2.244 to 10.31 and 0.3 to 1.0, respectively. In calculating
these supersonic flows, real gas effects are neglected. The calculated results are compared with
measurements covering the same range of Mach numbers and wall temperature ratios. A similar
model assuming the turbulent Prandt] number to be 0.9 is used to calculate the test cases and the

results compared with the variable Pr, model calculations and measurements.

The two model calculations yield results that are in good agreement with measurements.

One possible difference is in the prediction of the range of the log-law. The present model predicts

a longer range for all test cases examined compared to the constant Pr, model. In the test cases

studied, the longer log-law range seems to be more consistent with measurements. Thus

compared, the constant Pr, assumption is found to be valid for the range of Mach numbers and
wall temperature ratios investigated. On the other hand, compared to the constant Pr, calculations,
the present model over-predicts slightly the mean temperature in the range 0 < y/§ < 0.5 at high

Mach numbers and low wall temperature ratios. Consequently, the relative merits of the present
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model and the constant Pr, model have to be further analysed by comparing the calculations with

accurately measured turbulence statistics, which are presently lacking.
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